Search results for "hereditary spastic paraplegia"

showing 10 items of 19 documents

Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia

2010

Mutations in the SPG4 gene are the most common causes of hereditary spastic paraplegia (HSP) accounting for up to 40% of autosomal dominant (AD) forms and 12-18% of sporadic cases. The phenotype associated with HSP due to mutations in the SPG4 gene tends to be pure. There is increasing evidence, however, of patients with complicated forms of spastic paraplegia in which SPG4 mutations were identified. A cohort of 38 unrelated Italian patients with spastic paraplegia, of which 24 had a clear dominant inheritance and 14 were apparently sporadic, were screened for mutations in the SPG4 gene.We identified 11 different mutations, six of which were novel (p.Glu143GlyfsX8, p.Tyr415X, p.Asp548Asn, c…

MaleSpastinDNA Mutational AnalysisHereditary spastic paraplegiaEXON DELETIONSGene mutationmedicine.disease_causeSpastinFAMILIESCohort StudiesExonGenotypeSpasticMutation frequencyChild3' Untranslated RegionsChromatography High Pressure LiquidAdenosine TriphosphatasesGeneticsMutationHereditary spastic paraplegia SPG4Reverse Transcriptase Polymerase Chain ReactionMutation analysiExonsMiddle AgedMLPAPhenotypeMutation analysisItalyNeurologySettore MED/26 - NeurologiaFemaleAdultAdolescentGenotypeHereditary spastic paraplegia3 ' UTR3′ UTRMutation MissenseFREQUENTSPG4CLASSIFICATIONYoung AdultmedicineHumansAgedParaplegiaSPECTRUMbusiness.industrymedicine.diseaseNeurology (clinical)businessCOLLECTIONEXPRESSION ANALYSISGene Deletion
researchProduct

A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42).

2010

The most frequent causes of autosomal dominant (AD) hereditary spastic paraplegias (HSP) (ADHSP) are mutations in the SPAST gene (SPG4 locus). However, roughly 60% of patients are negative for SPAST mutations, despite their family history being compatible with AD inheritance. A mutation in the gene for an acetyl-CoA transporter (SLC33A1) has recently been reported in one Chinese family to cause ADHSP-type SPG42. In this study, we screened 220 independent SPAST mutation-negative ADHSP samples for mutations in the SLC33A1 gene by high-resolution melting curve analysis. Conspicuous samples were validated by direct sequencing. Moreover, copy number variations affecting SLC33A1 were screened by …

GeneticsParaplegiamedicine.diagnostic_testgenetics [Membrane Transport Proteins]Hereditary spastic paraplegiaSLC33A1 protein humanShort ReportMembrane Transport ProteinsLocus (genetics)BiologyGene mutationmedicine.diseaseGene dosagegenetics [Paraplegia]MutationGeneticsmedicineHumansCopy-number variationddc:610Family historyGeneGenetics (clinical)Genetic testingGenes Dominant
researchProduct

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

2018

© 2018 Elsevier Inc.

MaleAls geneGenome-wide association studyFAMILIAL ALSALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS0302 clinical medicine80 and overPsychologyGWASKIF5AAetiologycargoAged 80 and over0303 health sciencesFrench ALS ConsortiumKinesinKINESIN HEAVY-CHAINCognitive Sciencesaxonal transportHumanHereditary spastic paraplegiaNeuroscience(all)Single-nucleotide polymorphismTARGETED DISRUPTIONArticle03 medical and health sciencesGeneticsHumansAmino Acid SequenceLoss functionAgedHEXANUCLEOTIDE REPEATNeuroscience (all)MUTATIONSAmyotrophic Lateral Sclerosis3112 Neurosciences1702 Cognitive Sciencemedicine.diseaseITALSGEN ConsortiumAnswer ALS Foundation030104 developmental biologyALS Sequencing ConsortiumHuman medicine1109 Neurosciences030217 neurology & neurosurgery0301 basic medicineALS; GWAS; KIF5A; WES; WGS; axonal transport; cargo[SDV]Life Sciences [q-bio]KinesinsNeurodegenerativeGenetic analysisGenomeAMYOTROPHIC-LATERAL-SCLEROSIS3124 Neurology and psychiatryCohort StudiesPathogenesisLoss of Function MutationMissense mutation2.1 Biological and endogenous factorsAmyotrophic lateral sclerosisNYGC ALS ConsortiumGeneticsGeneral NeuroscienceALS axonal transport cargo GWAS KIF5A WES WGSMiddle AgedPhenotypeSettore MED/26 - NEUROLOGIANeurologicalProject MinE ALS Sequencing ConsortiumKinesinWESFemaleAdultBiologyGENOTYPE IMPUTATIONALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS; Adult; Aged; Aged 80 and over; Amino Acid Sequence; Amyotrophic Lateral Sclerosis; Cohort Studies; Female; Genome-Wide Association Study; Humans; Kinesin; Loss of Function Mutation; Male; Middle Aged; Young AdultNOYoung AdultRare DiseasesmedicineSLAGEN ConsortiumGene030304 developmental biologyClinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) ConsortiumNeurology & NeurosurgeryHuman GenomeNeurosciencesAXONAL-TRANSPORTBrain DisordersALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS;Family memberDNA-DAMAGEMOTOR-NEURONS3111 BiomedicineCohort StudieALSGenomic Translation for ALS Care (GTAC) ConsortiumWGSAmyotrophic Lateral SclerosiGenome-Wide Association StudyALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS; Neuroscience (all)
researchProduct

Human SPG11 cerebral organoids reveal cortical neurogenesis impairment

2018

Abstract Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients’ iPSC and controls. We reveal that an increased rate of asymmetric divisions of NPCs leads to proliferation defect, causing premature neurogenesis. Correspondingly, SPG11 organoids appe…

GenotypeHereditary spastic paraplegiaNeurogenesisFluorescent Antibody TechniqueBiology03 medical and health sciencesGlycogen Synthase Kinase 3GeneticsOrganoidmedicineSpasticHumansMolecular BiologyGenetics (clinical)Allelesbeta CateninCerebral Cortex0303 health sciences030305 genetics & heredityNeurogenesisProteinsGeneral MedicineHuman brainmedicine.diseaseNeural stem cellnervous system diseasesOrganoidsmedicine.anatomical_structurePhenotypeMutationGeneral ArticleDisease SusceptibilityParaplegiaCognition DisordersNeuroscienceNeural developmentBiomarkersHuman Molecular Genetics
researchProduct

Frequency and phenotype of SPG11 and SPG15 in complicated hereditary spastic paraplegia

2009

Background: Hereditary spastic paraplegias (HSP) are clinically and genetically highly heterogeneous. Recently, two novel genes, SPG11 ( spatacsin ) and SPG15 ( spastizin ), associated with autosomal recessive HSP, were identified. Clinically, both are characterised by complicated HSP and a rather similar phenotype consisting of early onset spastic paraplegia, cognitive deficits, thin corpus callosum (TCC), peripheral neuropathy and mild cerebellar ataxia. Objective: To compare the frequency of SPG11 and SPG15 in patients with early onset complicated HSP and to further characterise the phenotype of SPG11 and SPG15. Results: A sample of 36 index patients with early onset complicated HSP and …

AdultMaleAdolescentHereditary spastic paraplegiaGenes RecessiveCompound heterozygosityCorpus callosumCorpus CallosumYoung AdultGene FrequencyIntellectual DisabilitySpasticHumansMedicineMutation frequencyAllele frequencyGenetic Association StudiesPolymorphism GeneticCerebellar ataxiaSpastic Paraplegia Hereditarybusiness.industryProteinsmedicine.diseasePhenotypePsychiatry and Mental healthPhenotypeMutationImmunologyFemaleSurgeryNeurology (clinical)medicine.symptomCarrier ProteinsbusinessNeuroscienceJournal of Neurology, Neurosurgery & Psychiatry
researchProduct

SPG10 is a rare cause of spastic paraplegia in European families.

2008

Contains fulltext : 71099.pdf (Publisher’s version ) (Closed access) BACKGROUND: SPG10 is an autosomal dominant form of hereditary spastic paraplegia (HSP), which is caused by mutations in the neural kinesin heavy chain KIF5A gene, the neuronal motor of fast anterograde axonal transport. Only four mutations have been identified to date. OBJECTIVE: To determine the frequency of SPG10 in European families with HSP and to specify the SPG10 phenotype. PATIENTS AND METHODS: 80 index patients from families with autosomal dominant HSP were investigated for SPG10 mutations by direct sequencing of the KIF5A motor domain. Additionally, the whole gene was sequenced in 20 of these families. RESULTS: Th…

MaleDNA Mutational AnalysisKinesinsHEREDITARYmedicine.disease_cause0302 clinical medicineSpasticPerception and Action [DCN 1]Missense mutationKIF5AAge of OnsetChildFrameshift MutationMUTATIONGenes DominantGeneticsNeurologic Examination0303 health sciencesMutationSplice site mutationSITEExonsMiddle AgedAnterograde axonal transport3. Good healthPedigreeEuropePsychiatry and Mental healthPhenotypeATAXIASChild PreschoolFemaleChromosome DeletionMOTORFunctional Neurogenomics [DCN 2]AdultNeuromuscular diseaseGenotypeHereditary spastic paraplegiaMutation Missense03 medical and health sciencesCognitive neurosciences [UMCN 3.2]medicineHumansGait Disorders Neurologic030304 developmental biologyChromosome Aberrationsbusiness.industrySpastic Paraplegia HereditarySequence Analysis DNAmedicine.diseaseGENEPeripheral neuropathyGenetics PopulationSurgeryNeurology (clinical)RNA Splice Sitesbusiness030217 neurology & neurosurgeryJournal of neurology, neurosurgery, and psychiatry
researchProduct

REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31.

2008

Contains fulltext : 71291.pdf (Publisher’s version ) (Closed access) Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for REEP1 mutations and copy number variations. We identified 13 novel and 2 known REEP1 mutations in 16 familial and sporadic patients by direct sequencing analysis. Twelve out of 16 mutations were small insertions, deletions or splice site mutations. These changes would result in shifts of the open-reading-frame followed by premature termination of translation and haploins…

AdultMaleMutation rateAdolescentGenotypeHereditary spastic paraplegiaDNA Mutational AnalysisBiologymedicine.disease_causeArticleCognitive neurosciences [UMCN 3.2]Gene duplicationGenotypemedicinePerception and Action [DCN 1]HumansCopy-number variationAge of OnsetMutation frequencyChildAgedAged 80 and overGeneticsMutationHereditary cancer and cancer-related syndromes [ONCOL 1]Spastic Paraplegia HereditaryInfantMembrane Transport ProteinsMiddle Agedmedicine.diseasePedigreePhenotypeChild PreschoolMutationFemaleNeurology (clinical)HaploinsufficiencyFunctional Neurogenomics [DCN 2]
researchProduct

Oxidative Stress-Induced Axon Fragmentation Is a Consequence of Reduced Axonal Transport in Hereditary Spastic Paraplegia SPAST Patient Neurons

2020

Hereditary spastic paraplegia (HSP) is a group of inherited disorders characterized by progressive spasticity and paralysis of the lower limbs. Autosomal dominant mutations in SPAST gene account for ∼40% of adult-onset patients. We have previously shown that SPAST patient cells have reduced organelle transport and are therefore more sensitive to oxidative stress. To test whether these effects are present in neuronal cells, we first generated 11 induced pluripotent stem (iPS) cell lines from fibroblasts of three healthy controls and three HSP patients with different SPAST mutations. These cells were differentiated into FOXG1-positive forebrain neurons and then evaluated for multiple aspects …

0301 basic medicineHereditary spastic paraplegiaOxidative phosphorylationSpastinmedicine.disease_causelcsh:RC321-57103 medical and health sciences0302 clinical medicinemedicineSPASTAxonFragmentation (cell biology)hereditary spastic paraplegialcsh:Neurosciences. Biological psychiatry. NeuropsychiatryGeneral Neuroscienceperoxisomesaxon transportmedicine.diseaseepothilone Daxon degenerationCell biology030104 developmental biologymedicine.anatomical_structurenervous systemForebrainAxoplasmic transport030217 neurology & neurosurgeryOxidative stressFrontiers in Neuroscience
researchProduct

Compound heterozygosity in the SPG4 gene causes hereditary spastic paraplegia

2008

The SPG4 gene is frequently mutated in autosomal dominant form of hereditary spastic paraplegia (HSP). We report that the compound heterozygous sequence variants S44L, a known polymorphism, and c.1687G>A, a novel mutation in SPG4 cause a severe form of HSP in a patient. The family members carrying solely c.1687G>A mutation are asymptomatic for HSP. The reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that the c.1687G>A mutation is a splice site mutation and causes skipping of the exon 15 of spastin. Furthermore, quantification of RT-PCR products by sequencing and quantification of allele-specific expression by pyrosequencing assay revealed that c.1687G>A is a leaky…

MaleHeterozygoteSpastinHereditary spastic paraplegiaDNA Mutational AnalysisMolecular Sequence DataMutantIntracellular SpaceBiologyCompound heterozygositySpastinPolymorphism Single NucleotideWhite PeopleLoss of heterozygosity03 medical and health sciencesExon0302 clinical medicineGermanyGeneticsmedicineHumansRNA MessengerAllelesGenetics (clinical)030304 developmental biologyAdenosine TriphosphatasesRegulation of gene expressionGenetics0303 health sciencesSplice site mutationBase SequenceSpastic Paraplegia HereditaryComputational BiologyExonsmedicine.diseasePedigreeProtein TransportAmino Acid SubstitutionGene Expression RegulationMutationFemaleRNA Splice Sites030217 neurology & neurosurgeryHeLa CellsClinical Genetics
researchProduct

Evaluating the effect of spastin splice mutations by quantitative allele-specific expression assay

2010

Background:  Mutations in the SPG4/SPAST gene are the most common cause for hereditary spastic paraplegia (HSP). The splice-site mutations make a significant contribution to HSP and account for 17.4% of all types of mutations and 30.8% of point mutations in the SPAST gene. However, only few studies with limited molecular approach were conducted to investigate and decipher the role of SPAST splice-site mutations in HSP. Methods:  A reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and quantitative allele-specific expression assay were performed. Results:  We have characterized the consequence of two novel splice-site mutations (c.1493 + 1G>A and c.1414−1G>A) in the SPAST gene…

Genetics0303 health sciencesbusiness.industryHereditary spastic paraplegiaPoint mutationSpastinmedicine.disease03 medical and health sciencesExon0302 clinical medicineNeurologyRNA splicingMedicinespliceNeurology (clinical)businessSPAST gene030217 neurology & neurosurgeryAllele specific030304 developmental biologyEuropean Journal of Neurology
researchProduct